[1] Annemieke Ruitenberg, Tom den Heijer, Stef L M Bakker, et al.Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study [J]. Ann Neurol, 2005, 57(6): 789-794.[2] Mak Adam Daulatzai. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease [J]. J Neurosci Res, 2017, 95(4):943-972.[3] Eszter Farkas, Paul G M Luiten, Ferenc Bari. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases [J]. Brain Res Rev, 2007, 54(1):162-80. [4]Seth Love, J Scott Miners. Cerebrovascular disease in ageing and Alzheimer's diseas [J]. Acta Neuropathol, 2016, 131(5):645-658. [5] Cai Zhi-you, Yan Yong, Sun Shanquan, et al. Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease [J]. Neurochem Res, 2009, 34(7): 1226-1235. [6]Vincent Boissonneault, Isabelle Plante, Serge Rivest, et al. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1 [J]. J Biol Chem, 2009, 284: 1971-1981.[7] Quinlan S, Kenny A, Medina M, et al. MicroRNAs in neurodegenerative diseases[J]. Int Rev Cell Mol Biol, 2017, 334: 309-343. [8] Sebastien S Hebert, Katrien Horre, Laura Nicolai, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression [J]. Proc Natl Acad Sci USA, 2008, 105(17): 6415-6420.[9] Zong Yuan-yuan, Wang Hai-lin, Dong Wei, et al. miR-29c regulates BACE1 protein expression [J]. Brain Res, 2011, 1395: 108-115.[10] 车慧,杨宝峰,艾静. MicroRNA在学习记忆功能障碍中的作用[J]. 神经药理学报. 2011, 1(4): 26-32.[11] Kristin T Jacobsen, Kerstin Iverfeldt. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors [J]. Cell Mol Life Sci, 2009, 66(14): 2299-318. [12] Jing Ai , Li-Hua Sun, Hui Che, et al. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats [J]. J Neurosci, 2013, 33(9): 3989-4001[13] Piotr Lewczuk, Hermann Esselmann, Mirko Bibl, et al. Tau protein phosphorylated at threonine 181 in CSF as a neurochemical biomarker in Alzheimer's disease: original data and review of the literature [J]. J Mol Neurosci, 2004, 23(1-2): 115-22.[14]Gentry N Patrick, Lawrence Zukerberg, Margareta Nikolic, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration [J]. Nature, 1999, 402: 615-622[15]Sun Li-hua, Ban Tao, Liu Cheng-di, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 downregulation [J]. J Neuro chem, 2015, 134(6):1139-1151.[16]Ludovic Martin, Xenia Latypova, Cornelia M Wilson, et al. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A [J]. Ageing Res Rev, 2013a, 12(1): 39-49.[17]Ludovic Martin, Xenia Latypova, Cornelia M Wilson, et al. Tau protein kinases: involvement in Alzheimer's disease [J]. Ageing Res Rev, 2013b, 12(1): 289-309.[18]Ward Sents, Elitsa Ivanova, Caroline Lambrecht, et al. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity [J]. FEBS J, 2013, 280(2): 644-61.[19]Joana Oliveira, Marcio Costa, Maria Soares Cachide de Almeida, et al. Protein phosphorylation is a key mechanism in Alzheimer's disease [J]. J Alzheimers Dis, 2017, 58(4): 953-978. [20] Xing Yong-na, Li Zhu, Chen Yu, et al. Structural mechanism of demethylation and inactivation of protein phosphatase 2A [J]. Cell, 2008,133(1): 154-163. [21] Yao Xiu-qing, Zhang Xiao-xue, Yin Yang-yang, et al. Glycogen synthase kinase-3beta regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src [J]. Biochem J, 2011, 437(2): 335-344..[22]Li Mei, Damuni Zahi. I1PP2A and I2PP2A. Two potent protein phosphatase 2A-specific inhibitor proteins [J]. Methods Mol Biol, 1998, 93: 59-66.[23]Liu Cheng-di, Wang Qin, Zong De-kang, et al. Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion [J]. Neurobiol Aging, 2016, 45: 76-87.[24]Natalia Salvadores, Mario Sanhueza, Patricio Manque, et al. Axonal degeneration during aging and its functional role in neurodegenerative disorders [J]. Front Neurosci, 2017, 11:451.[25]Wilson M Alobuia, Xia Wei, Bhupinder P S Vohra. Axon degeneration is key component of neuronal death in amyloid-beta toxicity [J]. Neurochem Int, 2013, 63(8): 782-789.[26]Anatoly Y Nikolaev, T G Von McLaughlin, Dennis D M O'Leary, et al. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases [J]. Nature, 2009, 457(7232): 981-989.[27]Chen Xin, Jiang Xue-mei, Zhao Lin-jing, et al. MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion [J]. Cell Death Dis, 2017, 8(6):e2850. [28]Sangyun Jeong. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease [J]. Mol Cells, 2017, 40(9): 613–620.[29] Marta Crous-Bou, Carolina Minguillón, Nina Gramunt, et al. Alzheimer's disease prevention: from risk factors to early intervention [J]. Alzheimers Res Ther, 2017, 9(1):71. |